Multiple DG Planning Considering Distribution Loss and Penetration Level using EMEFA-ANN Method

نویسندگان

  • S. R. A. Rahim
  • M. M. Othman
  • M. H. Hussain
چکیده

This paper presents the implementation of multiple distributed generations planning in distribution system using computational intelligence technique. A pre-developed computational intelligence optimization technique named as Embedded Meta EP-Firefly Algorithm (EMEFA) was utilized to determine distribution loss and penetration level for the purpose of distributed generation (DG) installation. In this study, the Artificial Neural Network (ANN) was used in order to solve the complexity of the multiple DG concepts. EMEFA-ANN was developed to optimize the weight of the ANN to minimize the mean squared error. The proposed method was validated on IEEE 69 Bus distribution system with several load variations scenario. The case study was conducted based on the multiple unit of DG in distribution system by considering the DGs are modeled as type I which is capable of injecting real power. Results obtained from the study could be utilized by the utility and energy commission for loss reduction scheme in distribution system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Multiple FCLs Allocation Considering DG Penetration in Meshed Network With Multi-Level Voltages

Increasing the short circuit current due to the penetration of distributed generations (DGs) in various voltage levels and meshed topology is a basic problem in power systems. Using fault current limiter (FCL) is an efficient approach to mitigate the exceeded short circuit levels. In this paper, a new approach is presented for multiple FCLs locating to decrease short circuit levels in meshed ne...

متن کامل

The Effect of High Penetration Level of Distributed Generation Sources on Voltage Stability Analysis in Unbalanced Distribution Systems Considering Load Model

Static voltage stability is considered as one of the main issues for primary identification before voltage collapsing in distribution systems. Although, the optimum siting of distributed generation resources in distribution electricity network can play a significant role in voltage stability improving and losses reduction, the high penetration level of them can lead to reduction in the improvem...

متن کامل

Optimal Distributed Generation Planning in Radial Distribution Networks Considering Protection Coordination Limits

Distributed generation (DG) has been widely used in distribution network to reduce the energy losses, improve voltage profile and system reliability, etc.  The location and capacity of DG units can influence on probability of protection mal-operation in distribution networks. In this paper, a novel model for DG planning is proposed to find the optimum DG location and sizing in radial distr...

متن کامل

Distributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model

Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, consideri...

متن کامل

A planning scheme for penetrating embedded generation in power distribution grids

Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing research and practices on DG penetration planning have a few deficiencies: (1) limited to specific system configurations and capacities; (2) inaccurate and tending to lose i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017